NO-VE 2006 R. Plunkett 7 February, 2006



# Status of MINOS after one Year of Running

Robert Plunkett Fermi National Accelerator Laboratory Batavia, IL, USA **NO-VE III International Workshop on: ''NEUTRINO OSCILLATIONS IN VENICE'' 7 February, 2006**  My talk is dedicated to my friend and devoted colleague, Doug Michael

NO-VE 2006 R. Plunkett 7 February, 2006

Doug sadly passed away on Christmas Day, 2005, from complications of lymphoma.

He was a source of inspiration to everyone who knew him.

Italy was special to Doug.

We all miss him terribly, his voice, his energy, even his anger.



NO-VE 2006 R. Plunkett 7 February, 2006 MINOS Long-Baseline Experiment









 $\Delta m^2$  and  $\sin^2 2\theta_{23}$ 

Greatly improve existing measurement; excellent test against alternative hypotheses  $v_e$  appearance =>non-zero  $\theta_{13}$ 

*Can improve CHOOZ limit by ~2 with adequate protons* 

MINOS measurements improve with more protons



NuMI Components in Main Injector

# NuMI Neutrino Beam

NO-VE 2006 R. Plunkett 7 February, 2006



- •120 GeV protons strike the graphite target
- Nominal Intensity 2.4x10<sup>13</sup> ppp with ~2 sec cycle time.
- Initial intensity ~2.5 x 10<sup>20</sup> protons/year
- Ultimate intensity ~ 3.4 x 10<sup>20</sup> protons/year (2008-9)





Example spectra from varying horn positions

Start with low energy beam to accommodate  $\Delta m^2 \sim 0.002 \text{ eV}^2$ 

 $v_{\mu}$  CC Events in MINOS 5kt detector (2.5 x 10<sup>20</sup> POT/yr)

| Low    | ~ 1600/yr |
|--------|-----------|
| Medium | ~ 4300/yr |
| High   | ~ 9250/yr |







## Recent Performance of Main Injector for NuMI

NO-VE 2006 R. Plunkett 7 February, 2006





#### *Protons on Target and Uptimes* NO-VE 2006 R. Plunkett February, 2006





# The MINOS Detectors

NO-VE 2006 R. Plunkett





MINOS Detector Hall, Fermilab

Soudan Underground Lab, Minnesota

Both detectors are tracking calorimeters composed of interleaved planes of steel and scintillator – uptimes routinely exceed 95-97%.

- 2.54 cm thick steel planes
- -4.1 cm wide scintillator strips
- 1.5 T toroidal magnetic field.
- Multi-Anode Hamamatsu PMTs (M16 Far & M64 Near)
- Near electronics optimized for high occupancy (~20) during 10 µs spill
- Energy resolution: 55%/ $\sqrt{E}$  for hadrons, 23%/ $\sqrt{E}$  for electrons
- Muon momentum resolution ~ 6 % from range ( ~ 12 % from curvature )





### Minos Far Detector Events



### Contained CC event Expected rate ~3/day



Up-going muon Rate ~0.2/day



- Modest mass detector but magnetized can investigate v vs. anti-v oscillations.
- 6.18 kT years exposure, of which 4.5 are fiducial
- Trigger on 4/5 contiguous planes.
- Divide data into fully contained (FC) + downgoing PC, and upgoing PC events. Different background rejection algorithms in these two samples.
- Resulting candidate sample 107 in all categories
- "Good timing" sample divides into 49 down-going, 28 upgoing.
- Up-going muons subject of another analysis.





NO-VE 2006 Atmospheric Neutrino Results<sup>NO-VE 2006</sup> 7 February, 2006



 $\frac{R(up/down)^{data}/R(up/down)^{MC} = 0.62 \pm 0.14 \pm 0.02}{Using a high-resolution sample, exclude no-osc. hypothesis at 98%}{From 52 events with well-measured charge:$  $f (anti-v)^{data}/f(anti-v)^{MC} = 0.98 \pm 0.19 \pm 0.06}{Assuming oscillations for v and anti-v at <math>\Delta m^2 = .0024 \text{ eV}^2$ 

NO-VE 2006 R. Plunkett 7 February, 2006

# MINOS Beam Event Characteristics

- Simple event selections for both detectors.
- Far Detector
  - $-50 \ \mu s$  window around beam spill
  - Reconstructed track within fiducial volume (70% for CC)
  - Track angle along beam direction.
  - Data and beam quality cuts (96%)
- Only an unknown fraction of the far detector data is used for checks and testing (and presentations).
- Near Detector
  - Fiducial cuts using track or event vertex for candidate neutral currents
  - Track quality cuts for events with tracks
  - Beam quality cuts





The cuts described result in 159 neutrino events. Protons used for this work  $9.3 \times 10^{19}$ Caution: This is MINOS open sample only!



NO-VE 2006 R. Plunkett 7 February, 2006

# Stability of Datataking





Near Detector

Far Detector, using longer events to get best angular resolution.

### Range and Curvature Momentum *Comparison R. Plunkett* 7 February, 2006



Near Detector

Comparison in momentum regime where events are contained. Builds confidence in magnetic field map and calibration.



Tracking Performance

NO-VE 2006 R. Plunkett 7 February, 2006





Near Detector Spectrum showing stability and beam uncertainty.

NO-VE 2006 R. Plunkett 7 February, 2006



Using ND data to study variations and parametrizations of hadron production Work in progress. *Towards a CC Disappearance Analysis* 

- Blind analysis only <50% of data in open sample for comparisons.
  - Remainder modified by "blinding function".
- Steps in analysis
  - Select neutrino events
  - Classify as CC events
    - Likelihood-based procedure using pulse height, event length
    - Check with neural net based procedure good agreement. Also controlled scanning checks.
  - Simultaneous fit to near and far CC spectra to extract oscillation parameters.

Notes: NuMI/MINOS MC used to extrapolate far/near Fit  $\chi^2$  will include systematic errors.

# *Performance of PID Charged Current*<sup>KO-VE 2006</sup> *Selection Algorithm*



With cut at -0.2, MC estimate of efficiency is 87%, with purity 98%

Stability of CC Selection Algorithms



Excellent overlap between algorithms for charged-current selection.



# Results of Mock Data Challenge (simulated 7.4 x 10<sup>20</sup> protons)

NO-VE 2006 R. Plunkett 7 February, 2006



#### Fit to reconstructed far energy spectrum

#### Best fit results for oscillation parameters

|                       | Challenge Value        | Fitted Value           |
|-----------------------|------------------------|------------------------|
| $\Delta m^2$          | 2.1 x 10 <sup>-3</sup> | 2.2 x 10 <sup>-3</sup> |
| $Sin^2(2\theta_{23})$ | 0.88                   | 0.93                   |



NO-VE 2006 R. Plunkett

7 February, 2006

- Data samples and event selections defined.
- Fitting procedures well-advanced.
- Currently concentrating on understanding beam systematics on measurement.
  - Take advantage of huge Near Detector dataset.
- Continue cross-checking before opening blinded box.
- Anticipate results for conferences soon.

**NO-VE 2006** R. Plunkett 7 February, 2006



- A very successful commissioning year!
  - All MINOS measurements improve with more beam.
- Atmospheric results submitted for publication.
  - Approximately 100 each of upgoing muons and contained events.
- CC analysis well towards completion.
- Will certainly be able to use first 10<sup>20</sup> protons data to verify choice of lowenergy (LE) beam as operating point.



MINOS, 8e19 p.o.t.